With over 15 million products available for same-day shipping, a 90 day money-back guarantee, and a limited lifetime warranty, c3controls can be an asset to help you meet your customers demands in today’s water and wastewater industry.
This short paper will cover the basic building blocks of pump control. It is not intended to be the end-all for water and wastewater applications, but rather an introduction.
Water and waste water treatment requires moving water through the different stages of treatment. To do that, pump stations are used. Each part or station of the water treatment process can require a different type of pump. While the pumps are different, they all share the common architecture of an electric motor and a method of controlling those motors.
According to the US EPA, pump station capacities range from 76 lpm (20 gpm) to more than 378,500 lpm (100,000 gpm). Prefabricated pump stations generally have a capacity of up to 38,000 lpm (10,000 gpm). Usually, pump stations include at least two constant-speed pumps ranging in size from 38 to 75,660 lpm (10 to 20,000 gpm) each and have a basic wet-well level control system to sequence the pumps during normal operation. Source: EPA 832-F-00-069, September 2000
The process of moving water is extremely energy-intensive. In the US, electric motor-driven devices, including pumps, use almost 65%-70% of all electricity produced in the country. Water and wastewater systems are known to utilize almost 50% of the energy in any municipality, of which 90% of the energy is used by pumps.
Liquid level switches and sensors trigger when a desirable water level is attained. Trapped air column, or bubbler system that senses pressure and level, are commonly used for pump station controls. Other control alternatives are electrodes placed at cut-off levels and float switches. These sensors and switches signal the pump motor control systems to keep the water treatment process flowing and achieving optimum process efficiencies.
Municipal water systems use pumps to draw raw water from resources, such as lakes or rivers, for treatment to meet regulatory standards for potable water for human consumption or use in cooling towers, boilers, and other industrial applications.
Water and wastewater management has become a priority in industries such as chemical manufacturing, energy production, and food and pharmaceutical processing. The quality of water treatment entirely depends on the type of process employed. These treatment plants employ primary, secondary, and tertiary processes that vary depending on the level of contaminants in the water. The following are some popular pumps largely used in water and wastewater industry for water treatment.
Some examples of where different types of pumps can be used are shown below in Table 1.
Proper pump, motor, and controls selection optimizes the performance of water treatment systems and can provide energy savings of 20% – 50%. Selecting a pump with the correct characteristics is achieved by studying pump performance curves. Below is an example of an ESP (Electric Submersible Pump) pump performance curve.
Horsepower motor load is the determining factor when selecting the correct motor controls.
Typically these contactors feature 3-pole electrically operated switches, which take less space when installed inside electrical enclosures. The motors used in water treatment and wastewater treatment pumps are known to draw more energy at any voltage. The possibility of electric shock increases at high voltage and may cause heavy damage. However, AC and DC contactors are safe to use while starting the motor, as there is no current flow between the circuit powering a contactor and the circuit being switched.
The contactors are mounted so they do not touch the circuit that is being switched. Because these contactors use less power than the main switching circuit, they help reduce power consumption. Advanced motor contactors feature compact designs, which further help reduce the footprint of the device and its power consumption.
Designed as electromechanical devices, overload relays are distinguished as bimetallic, melting alloy, or solid-state electronic relays on the basis of their construction.
Bimetallic overload relays are one of the most common types of overload protection devices, and they feature adjustable trip points. Bimetallic overloads are engineered for automatic reclosing and compensate to prevent ambient temperature changes. In addition, these overload relays protect motors in extreme temperature environments.
Advanced bimetallic overload relays feature manual or automatic reset and test modes and a stop button that enables better device management. Many of these relays possess single phase sensitivity, which helps protect motors against phase loss conditions. These relays are provided in three trip class ratings:
These features help minimize energy consumption and increase motor efficiency.
Commonly used in many water pumping systems, these circuit protection components are used as manual motor controllers or paired with contactors in several multi-motor applications. Motor protection circuit breakers are mainly distinguished as open or enclosed. The difference between these types is where the circuit breaker is secured, either inside an enclosure or open in the panel. Most advanced motor protection circuit breakers offer space savings, as they are designed without individual motor branch circuit fuses, overload relays, or circuit breakers.
Contactors
These devices are often confused with relays, however, the main difference is contactors can easily switch higher currents and voltages, whereas the relay is used for lower current applications. Keep the following in mind when selecting contactors for your motors:
Overload Relays
When used in water or wastewater industries, overload relays are governed by strict requirements. With so many designs available, choosing the right overload relay may become difficult. These factors will simplify the selection process:
Motor Protection Circuit Breakers
Most pump systems in the market today include basic motor protection built into the motor or control box. This protection however is designed to safeguard against only current problems, therefore additional motor protection should be considered. There are many options available to choose from, each present slightly different performance characteristics under overload conditions. Factors to consider are:
Overload relays, contactors, and motor protection circuit breakers are largely used in the following applications.
All motor controls referenced in this document are designed in accordance with standards published by NEMA (National Electrical Manufacturers Association) or IEC (International Electrotechnical Commission).
NEMA is primarily a North American Standard, whereas IEC is a global standard.
NEMA Rating
The NEMA ratings of a starter depend largely on the maximum horsepower ratings given in the National Electrical Manufacturers Association ISCS2 standard. The selection of NEMA starters is done on the basis of their NEMA size, which varies from Size 00 to Size 9.
The NEMA starter, at its stated rating, can be used for a wide range of applications, ranging from simple on and off applications to plugging and jogging applications, which are more demanding. It is necessary to know the voltage and horsepower of the motor when selecting the proper NEMA motor starter. In the case where there is a considerable amount of plugging and jogging involved, then derating a NEMA-rated device will be required.
IEC Rating
The International Electrotechnical Commission (IEC) has specified the operational and performance characteristics for IEC devices in the publication IEC 60947. Standard sizes are not specified by the IEC. The typical duty cycle of IEC devices are defined by utilization categories. As far as general motor starting applications are concerned, AC3 and AC4 are the most common utilization categories.
Unlike NEMA sizes, they are typically rated by their maximum operating current, thermal current, HP and/or kW rating.
Below are three examples of pump control, using basic industrial motor controls. These are simple representations, and not intended to provide complete solutions.
We hope that this short paper has given you a good, basic understanding of pump control for water/wastewater. Look for other informative papers from c3controls, including our series on Industrial Control Basics, at c3controls.com/blog.
Disclaimer:
The content provided in this white paper is intended solely for general information purposes and is provided with the understanding that the authors and publishers are not herein engaged in rendering engineering or other professional advice or services. The practice of engineering is driven by site-specific circumstances unique to each project. Consequently, any use of this information should be done only in consultation with a qualified and licensed professional who can take into account all relevant factors and desired outcomes. The information in this white paper was posted with reasonable care and attention. However, it is possible that some information in these white papers is incomplete, incorrect, or inapplicable to particular circumstances or conditions. We do not accept liability for direct or indirect losses resulting from using, relying or acting upon information in this white paper.
c3controls Headquarters, USA
664 State Street
Beaver, PA 15009
TEL 724.775.7926
FAX 724.775.5283